SECTION A

Question	Кеу	Marks	Guidance
1	В	1	

Q	Jesti	on	Answer	Marks	Guidance
2	(a)		$C_5H_{10}O + 7O_2 \longrightarrow 5CO_2 + 5H_2O \checkmark$	1	ALLOW multiples e.g. $2C_5H_{10}O + 14O_2 \longrightarrow 10CO_2 + 10H_2O$ ALLOW any equation involving an unsaturated alcohol with correct balancing e.g. $C_5H_8O + 6.5O_2 \longrightarrow 5CO_2 + 4H_2O$ $C_5H_6O + 6O_2 \longrightarrow 5CO_2 + 3H_2O$ $C_5H_4O + 5.5O_2 \longrightarrow 5CO_2 + 2H_2O$ $C_5H_2O + 5O_2 \longrightarrow 5CO_2 + H_2O$ IGNORE state symbols
	(b)	(i)	Diagram showing a water molecule and an ethanol molecule with at least one H^{δ^+} and one O^{δ^-} on BOTH molecules \checkmark Hydrogen bond between one lone pair on O atom in one of the molecules and the H atom of another. AND Hydrogen bonding stated or labelled on diagram \checkmark e.g. Hydrogen bond $H = \begin{pmatrix} H \\ - \\ - \\ H \end{pmatrix} = \begin{pmatrix} \delta^- \\ - \\ - \\ - \\ - \\ + \\ - \\ - \\ - \\ - \\ $	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW δ+ on H atoms of alkyl group DO NOT ALLOW any marks for a diagram containing O ₂ H If more than one hydrogen bond is shown they must all be correct to award the mark.

Quest	ion	Answer	Marks	Guidance
	(ii)	Hexane-1,6-diol has more OH groups (than hexan-1-ol) AND (hexane-1,6-diol) forms more hydrogen bonds with water ✓	1	Statements MUST be comparative e.g. hexane-1,6-diol has two –OH groups and hexan-1-ol has one -OH group ALLOW hydroxyl or hydroxy DO NOT ALLOW hydroxide/OH ⁻ ALLOW ORA
(C)	(i)	Starting material from reduction reaction $\downarrow \qquad \qquad$	5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous Watch for missing methyl groups IGNORE H ⁺ / acid or H ₂ O or ethanol ALLOW sodium borohydride OR sodium tetrahydridoborate ALLOW LiAIH ₄

	Mark Scheme									
Quest	ion	Answer	Marks	Guidance						
				ALLOW in either order						
	(ii)	3-methylcyclohexanol ✓	1	ALLOW 3-methylcyclohexan-1-ol ALLOW 1-methylcyclohexan-3-ol IGNORE lack of hyphens, or addition of commas						
(d)		Structures of organic products	5	ANNOTATE WITH TICKS AND CROSSES						
				Use of any primary alcohol containing 3, 5 or more carbons can be awarded up to 4 marks. ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous						
				IGNORE names DO NOT ALLOW CH ₃ CH ₂ CH ₂ COH for the structure of the aldehyde. ALLOW CH ₃ CH ₂ CH ₂ CO ₂ H for the structure of the carboxylic acid.						
		Equations		ALLOW marks for structures from equations as						
		$\begin{array}{c} CH_3CH_2CH_2CH_2CH_2OH + [O] \longrightarrow CH_3CH_2CH_2CHO + H_2O \\ \checkmark \\ \\ CH_3CH_2CH_2CH_2OH + 2[O] \longrightarrow CH_3CH_2CH_2COOH + \\ \\ H_2O \checkmark \end{array}$		long as unambiguous. ALLOW molecular formulae in equations e.g. $C_4H_{10}O + [O] \longrightarrow C_4H_8O + H_2O$ $C_4H_{10}O + 2[O] \longrightarrow C_4H_8O_2 + H_2O$ $C_4H_9OH + [O] \longrightarrow C_3H_7CHO + H_2O$ $C_4H_9OH + 2[O] \longrightarrow C_3H_7CO_2H + H_2O$						
		Reaction conditions		IGNORE incorrect structures in equations i.e. $C_4H_{10}O + [O] \longrightarrow C_3H_7COH + H_2O$						

Question	Answer	Marks	Guidance
	Distillation to produce aldehyde/CH ₃ CH ₂ CH ₂ CHO AND		scores equation mark
	Reflux to produce carboxylic acid/CH ₃ CH ₂ CH ₂ COOH ✓		Conditions must be linked to aldehyde/carboxylic acid or correct products.
			Conditions may be written above arrow of equation.
	Tota	15	

Question	Answer	Marks	Guidance
3	C	1	

Question		n	Answer	Marks	Guidance		
4	(a)	(i)	3-methylbutan-2-ol ✓	1	IGNORE lack of hyphens or addition of commas ALLOW 3-methylbutane-2-ol DO NOT ALLOW 2-methylbutan-3-ol OR 3-methylbut-2-ol OR 3-methylbutan-2-ol OR 3-methybutan-2-ol OR 3-methlybutan-2-ol		
		(ii)	$(CH_3)_2CHCHOHCH_3 \checkmark$	2	ALLOW brackets around OH e.g. (CH ₃) ₂ CHCH(OH)CH ₃ ALLOW any unambiguous structural formula e.g. CH ₃ CH(CH ₃)CHOHCH ₃ CH ₃ CH(CH ₃)CH(CH ₃)OH ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW in either order		

Question	Answer	Marks	Guidance
(c)	Product from excess CH ₃ OH/H ₂ SO ₄ H ₃ COOC ✓ ✓	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous e.g OOC IGNORE connectivity in each product
			ALLOW the <i>E</i> or <i>Z</i> isomer as product from excess CH_3OH/H_2SO_4
	Product from steam, H ₃ PO ₄		
	HOOC OH V		
	Repeat unit of polymer C		
	Н СООН НООС СООН С		 'End bonds' MUST be shown (do not have to be dotted) IGNORE brackets IGNORE n ALLOW more than one repeat unit but has to be a whole number of repeat units
	Tot	al 11	

Question	Answer	Marks	AO element	Guidance
5	Α	1	1.1	
6	C	1	2.3	
7	D	1	2.1	
8	В	1	2.3	

	Question		Answer	Marks	AO element	Guidance	
9	(a)	(i)	Reagents K2Cr2O7 AND acid AND reflux ✓Equation HO(CH2)4OH + 4[O] → HOOC(CH2)2COOH + 2H2O	3	1.1	ALLOW Na ₂ Cr ₂ O ₇ OR Cr ₂ O ₇ ²⁻ ALLOW H ₂ SO ₄ OR HCI OR H ⁺ ALLOW words. e.g. 'acidified dichromate' ALLOW a small slip in formula for dichromate e.g KCr ₂ O ₇	
			[O] AND H₂O ✓		2.5		
			Correctly balanced equation ✓		2.6		
		(ii)	Correctly balanced equation \checkmark hydrogen/H bond HO OR $(CH_2)_2 - C$ HO $(CH_2)_2 - C$ HO $(C-(CH_2)_2 - C$ HO $(C-(CH_2)_2 - C$ HO $(C-(CH_2)_2 - C$ $(CH_2)_2 $	2	2.1×2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW δ + on H atoms of CH ₂ group ALLOW H-bond for hydrogen bond ALLOW H bond between C=O and H ₂ O, i.e. O - H hydrogen/H bond H δ^+ O - H HO HO H HO H HO H HO H H H H H H H H	
			of the molecules and the H atom of another AND Hydrogen bonding stated or labelled on diagram			bond/H bond from text	

G	Question		Answer	Marks	AO element	Guidance
	(b)	(i)	$ \begin{array}{c} 0 \\ 0 \\ C \\ (CH_2)_2 \\ C \\ O \\ (CH_2)_4 \\ -O \\ $ Ester link (must be displayed) \checkmark Rest of structure \checkmark	2	1.2 2.5	ALLOW the 'O' or C=O at either end, e.g. $O = O = C - (CH_2)_2 - C - O - (CH_2)_4 - C$ $O = O = C - (CH_2)_2 - C - O - (CH_2)_4 - C$ $O = O = O - (CH_2)_4 - O = C$ IGNORE brackets IGNORE brackets IGNORE n End bonds' MUST be shown (solid or dotted) DO NOT ALLOW more than one repeat unit
		(ii)	the ester/ ester bond/ ester group /polyester can be broken down ✓ OR It can be hydrolysed ✓	1	3.2	IGNORE references to photodegradable 'Bond breaks' is not sufficient – no reference to ester bond
		(iii)	$\int_{HO}^{O} C - (CH_{2})_{2} - C + 2 SOCI_{2} \longrightarrow C - (CH_{2})_{2} - C + 2 SO_{2} + 2 HCI$ HO SOCI ₂ in equation \checkmark Structure of diacyl dichloride \checkmark	3	1.1 1.2	ALLOW alternative approach using PCl₅ or PCl ₃
			Complete balanced equation \checkmark		2.6	